Ela on Spectra of Expansion Graphs and Matrix Polynomials
نویسنده
چکیده
An expansion graph of a directed weighted graph G0 is obtained fromG0 by replacing some edges by disjoint chains. The adjacency matrix of an expansion graph is a partial linearization of a matrix polynomial with nonnegative coefficients. The spectral radii for different expansion graphs of G0 and correspondingly the spectral radii of matrix polynomials with nonnegative coefficients, which sum up to a fixed matrix, are compared. A limiting formula is proved for the sequence of the spectral radii of a sequence of expansion graphs of G0 when the lengths of all chains replacing some original edges tend to infinity. It is shown that for all expansion graphs of G0 the adjacency matrices have the same level characteristic, but they can have different height characteristics as examples show.
منابع مشابه
On spectra of expansion graphs and matrix polynomials, II
An expansion graph of a directed weighted graph G0 is obtained fromG0 by replacing some edges by disjoint chains. The adjacency matrix of an expansion graph is a partial linearization of a matrix polynomial with nonnegative coefficients. The spectral radii for different expansion graphs of G0 and correspondingly the spectral radii of matrix polynomials with nonnegative coefficients, which sum u...
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملCOSPECTRALITY MEASURES OF GRAPHS WITH AT MOST SIX VERTICES
Cospectrality of two graphs measures the differences between the ordered spectrum of these graphs in various ways. Actually, the origin of this concept came back to Richard Brualdi's problems that are proposed in cite{braldi}: Let $G_n$ and $G'_n$ be two nonisomorphic simple graphs on $n$ vertices with spectra$$lambda_1 geq lambda_2 geq cdots geq lambda_n ;;;text{and};;; lambda'_1 geq lambda'_2...
متن کاملThe Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002